Non-bulrush Habitat Use by Amargosa Voles (Microtus californicus scirpensis)

Austin Roy, Andrés M. López-Pérez, Laura Backus, Stephanie Castle, Deana L. Clifford, and Janet Foley

1Department of Veterinary Medicine and Epidemiology, University of California, Davis, 2108 Tupper Hall, Davis, California 95616
2Wildlife Investigations Lab, California Department of Fish and Wildlife, 1701 Nimbus Road, Rancho Cordova, California 95670
3Instituto de Ecología (INECOL), Instituto de Ecología, Asociación Civil, Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa, Veracruz. Código Postal 91073, México
4Department of Animal Science, California Polytechnic University, 1 Grand Avenue, San Luis Obispo, California, 93407
5ECORP Consulting, Inc., 2525 Warren Drive, Rocklin, California 95677
6Corresponding author, e-mail: anroy4@gmail.com

Abstract.—Understanding how sensitive species use their habitats is critical to conservation and management efforts. The Amargosa Vole (Microtus californicus scirpensis) is believed to be strictly reliant on Three-square Bulrush (Schoenoplectus americanus, hereafter Bulrush) dominated habitats, but has anecdotally been observed in non-Bulrush dominated habitats as well. Using range-wide camera-trapping and live-trapping survey data from 2015–2016 and 2019–2020, we summarized detections of voles in non-Bulrush dominated habitats. Through live-trapping data, we observed that up to 17% of trap locations that captured voles occurred in non-Bulrush dominated habitats, with a mean distance from Bulrush habitat of 16 m. Furthermore, voles were detected at multiple camera trap locations in non-Bulrush dominated habitats. Voles were most often detected in non-Bulrush dominated habitats containing Saltgrass (Distichlis spicata), rushes (Juncus spp.), Boraxweed (Nitrophila occidentalis), Yerba Mansa (Anemopsis californica), and Common Reed (Phragmites australis) dominated habitats. The relatively regular detection of voles in non-Bulrush dominated habitats may indicate that these areas are also important to the ecology and biology of the species. Incorporating non-bulrush vole habitat into conservation and management objectives is likely to have multiple benefits for the conservation of the Amargosa Vole.

Key Words.—camera-trap; detection; live-trap; marsh; vegetation

Introduction

The Amargosa Vole (Microtus californicus scirpensis, hereafter vole) is a federally and California state-listed Endangered subspecies of the California Vole (M. californicus; U.S. Fish and Wildlife Service [USFWS] 2019; California Natural Diversity Database 2024). The species is only found in approximately 22 ha of disconnected marsh habitat in the Mojave Desert near Tecopa and Shoshone, California. Depending on the year, voles occur in 51–86% of available marsh sites (Deana Clifford et al., unpubl. report), with these marshes typically having low plant diversity and are dominated by Three-square Bulrush (Schoenoplectus americanus, hereafter bulrush), which has been positively associated with vole abundance and occupancy (Klinger et al. 2016; López-Pérez et al. 2019; Foley et al., unpubl. report). Bulrush has also been documented to comprise a dominant proportion of the diet of the vole, although bulrush cannot solely support voles, and voles must rely on a variety of different forage species (Castle et al. 2020a). As such, there has been a misconception about the relative importance of other vegetation habitats for the vole and most management and conservation efforts have primarily focused on protecting and managing bulrush-dominated habitats. Other habitats, including bulrush-mixed habitats (López-Pérez et al. 2019), have been rarely evaluated for voles, resulting in little information on whether voles use these habitats or not. Without a comprehensive understanding of the habitat-use by the vole, we lack a complete understanding of the ecology of the species and are hindered in optimal management and conservation of it. Herein, we report on detections of voles within non-bulrush dominated habitats from various vole survey efforts.

Methods

We conducted vole surveys and vole reintroductions within the Amargosa River basin in the Mojave Desert near Shoshone (35.9797°, -116.2720°) and Tecopa (35.8824°, -116.235368°) in Inyo County, California, at elevations from 390–417 m (Fig. 1). The vole occupies wetlands fed by the Amargosa River as well as ephemeral and perennial spring-fed surface flows. The majority of marshes where voles have been studied are dominated by bulrush interspersed with other wetland plant species (e.g., graminoids, forbs) and surrounded by upland plant communities (e.g., graminoids, forbs, shrubs, and trees; Rado and Rowlands 1984).

Between 2015–2016, we live trapped small mammals using Sherman traps at 15 grid locations across the entirety of the known extant range of the vole (Janet Foley, unpubl. report). Trapping grid design followed...
methodology established by Klinger et al. (2015) and each grid covered a 1-ha area, with a majority of trap locations located in bulrush-dominated habitat, but also with portions of each grid located in non-bulrush-dominated habitats. We trapped each grid for 5 d, approximately every six weeks for 12 mo. At least once during the 12-mo survey, we assessed the vegetation at each trapping location by identifying each species and quantifying the percentage cover using Daubenmire values (Daubenmire 1959; Janet Foley, unpubl. report) within a 1-m² quadrat. To avoid sampling in areas trampled due to repeated surveys, we placed quadrats on the opposite side of the trail from each trap. Additionally, during this survey effort, we placed 1–3 baited camera traps in 21 sites, which we set to record data for approximately six weeks. We sampled most camera locations 2–3 times over the course of a year (Roy et al. 2023).

Between 2019–2020, we assessed sites for vole occupancy using un-baited camera traps at six sites and we surveyed for vole sign (feces, clipped vegetation, burrows, runways) at another seven sites. We set 14 camera traps in and on the periphery of each marsh, in areas which lacked dominant bulrush habitat. We placed camera traps in areas where sign consistent with voles was present or near burrow entrances that we suspected were occupied by voles (e.g., set at egress points from marshes to detect voles moving among marshes). The camera traps were active for 4–11 d and typically not baited, except for cameras in Site 8. We baited cameras in Site 8 with a mixture of oatmeal and peanut butter placed on the ground within the field of view of the camera. We performed sign surveys along the perimeter and areas surrounding each marsh and we recorded locations of presumptive vole sign using a GPS device. We assessed vegetation at each camera-trap location as described above.
Results

During the 2015–2016 range-wide assessment, approximately 17% of trap locations with captured voles (89/518) occurred in non-bulrush dominated habitats (<5% cover of live bulrush or bulrush litter). At approximately half of these trap locations (53), bulrush was completely absent (0% cover) from the sampling quadrats; however, some quadrats may have been in proximity to bulrush sites (within 1 m). Across all non-bulrush dominated sites, vegetation communities consisted of >25% cover of the following species (singly or in combination): Inland Saltgrass (hereafter saltgrass, *Distichlis spicata*, n = 35), rushes (*Juncus* spp., n = 21), Boraxweed (*Nitrophila occidentalis*, n = 6), Yerba Mansa (*Anemopsis californica*, n = 4), sedges (*Carex* spp., n = 3), Common Reed (*Phragmites australis*, n = 21), and Annual Sunflower (*Helianthus annuus*, n = 3). The distance of individual trap locations to the nearest bulrush habitat ranged from 0 m (immediately adjacent) to 61 m from bulrush, with 15.7% of these locations occurring along the edge (0 m distance) of bulrush habitat, 29.2% occurring near bulrush (1–10 m), and 31.5% occurring ≥ 20 m from bulrush (overall mean distance = 16 m; Fig. 2). The highest proportion of vole captures in non-bulrush dominated habitats occurred during summer and early fall (May-September). During the same survey period, the one baited camera trap in non-bulrush-dominated trap locations (n = 6) were captured in areas of >15% saltgrass and <5% bulrush (live and/or litter) cover, including three locations where bulrush (live and litter) was absent.

Site specific vegetation descriptions. —Site 5: This site consisted of a moderately sized bulrush patch adjacent to open water (Fig. 1). This bulrush patch was surrounded by saltgrass with small amounts Boraxweed. Voles live trapped in non-bulrush-dominated trap locations (n = 6) were captured in areas of >15% saltgrass and <5% bulrush (live and/or litter) cover, including three locations where bulrush (live and litter) was absent.

Site 8: This site consisted of moderately sized bulrush and cattail (*Typha* spp.) patches, centered along a stream and fed by multiple sources (Fig. 1). The bulrush patch was surrounded by patches of Yerba Mansa, saltgrass, Common Reed, Alkali Sacaton (*Sporobolus airoides*), mesquite (*Prosopis* spp.), and salt cedar (*Tamarix* spp.). While voles were detected at two camera locations, only one location was co-dominated by non-bulrush (Common Reed; Table 1). We did not find vole sign in the peripheral area of this site.

Site 9: This site consisted of a bulrush marsh surrounded by a well-developed margin of rushes, Yerba Mansa, Boraxweed, and saltgrass (Fig. 1). The site also included two substantial patches of Common Reed,

Figure 2. Violin plot showing the distance (m) of live trap locations that detected Amargosa Voles (*Microtus californicus scirpensis*) in non-bulrush dominated habitat to bulrush habitat within each sampled site during the 2015–2016 survey. Data collected from near Tecopa, Inyo County, California.
uphill of the bulrush marsh. Outside of the bulrush marsh, voles were detected on camera at two locations dominated by Boraxweed and rushes, respectively (Table 1). Additionally, we found vole burrows into the soil layer and vole feces in non-bulrush habitats along the periphery of Site 9.

Site 10: This site consisted of a strip of bulrush following a stream that flowed from a culvert under a road (Fig. 1). The bulrush area was surrounded by Yerba Mansa, saltgrass, Boraxweed, sedges, rushes, Alkali Sacaton, Almutaster (*Aster pauciflorus*), and Goldenweed. We trapped voles in eight locations where no bulrush was present but at sedge (n = 1 site), Yerba Mansa-sedge co-dominant (n = 1), Yerba Mansa, (n = 1), Yerba Mansa-rush co-dominant (n = 1), saltgrass-Boraxweed co-dominant (n = 1), Rush (n = 2), rush-Boraxweed (n = 1) dominated trap locations.

Site 11: This site consisted of a relatively small to moderately sized bulrush area surrounded by saltgrass, Boraxweed, rushes, Annual Sunflower, and Common Reed (Fig. 1). The site had no apparent water source other than seasonal upwelling of groundwater or perhaps a diffuse spring discharge. We trapped voles at one location outside of the bulrush area in Boraxweed dominated habitat.

Site 12: This site consisted of a moderately sized bulrush area adjacent to a seasonal pond and was surrounded by areas of Common Reed, saltgrass, Boraxweed, rushes, and upland vegetation (Fig. 1). We trapped voles at two non-bulrush dominated locations; one location completely lacked bulrush (live and litter) and the second location had minimal (< 0.5%) bulrush litter present. One location was dominated by saltgrass and the other by a Boraxweed-saltgrass mix.

Sites 17 and 21: These sites consisted of a large bulrush marsh surrounded by saltgrass wetlands on the north and west and upland habitat with some rushes and Boraxweed on the south and east side of the site (Fig.

Table 1. Habitat notes for camera trap detections of Amargosa Voles (*Microtus californicus scirpensis*) in Sites 8, 9, 17, 22, and 58 in Tecopa, California, from 2019–2020. The abbreviation CN = camera identification number, SM/WD = soil moisture/water depth, and VD = voles detected (yes/no) with the number detected in parentheses.

<table>
<thead>
<tr>
<th>Marsh</th>
<th>CN</th>
<th>Vegetation cover</th>
<th>SM/WD</th>
<th>VD</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>17.1</td>
<td>65% Yerba Mansa, 20% Boraxweed, litter depth 70cm</td>
<td>Moist soil</td>
<td>Yes (1)</td>
<td>10 trap/nights. A small patch of bulrush coming down hill. Vole sign, no burrow.</td>
</tr>
<tr>
<td>9</td>
<td>9.1</td>
<td>70% Boraxweed, 4% Common Reed, 2% Yerba Mansa, litter depth 40cm</td>
<td>Dry soil</td>
<td>Yes (3)</td>
<td>11 trap/nights. Vole sign present, burrow present; 20-25m from the edge of bulrush patch. Voles observed using the burrow a couple of times.</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>40% rushes, 2% Boraxweed, other spp. 10%, litter depth ~60cm</td>
<td>Dry soil</td>
<td>Yes (2)</td>
<td>9 trap/nights. Vole sign tunnel through the grass, burrow built in the Juncus.</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>60% rushes, 5% Yerba Mansa, 5% Boraxweed, litter depth 70cm</td>
<td>Dry soil</td>
<td>No</td>
<td>5 trap/nights. Bulrush edge at 40m to the camera trap. Poop signs and two burrows.</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>70% rushes, 5% saltgrass, litter depth 55cm</td>
<td>Dry soil</td>
<td>No</td>
<td>5 trap/nights. ~30 pellets of poop vole. Burrow present.</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>50% Common Reed, 5% Yerba Mansa, litter depth 20cm</td>
<td>Dry soil</td>
<td>No</td>
<td>5 trap/nights. Two burrows with vole signs.</td>
</tr>
<tr>
<td>22</td>
<td>22.1</td>
<td>75% Yerba Mansa, bulrush < 5%, woody debris 2%, litter depth 50cm</td>
<td>Dry soil</td>
<td>No</td>
<td>11 trap/nights; House mouse every day, no voles were recorded</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
<td>60% Yerba Mansa, 30% rushes, 20% Boraxweed, litter depth ~55cm</td>
<td>Dry soil</td>
<td>No</td>
<td>9 trap/nights. No standing water. No vole signs observed.</td>
</tr>
<tr>
<td>8a</td>
<td>8a.1</td>
<td>85% Common Reed, 25% bulrush, litter depth ~65cm</td>
<td>Moist soil, near small stream</td>
<td>Yes (12)</td>
<td>4 trap/nights. Voles observed every day, up to 3 voles observed in single frame, one aggression event.</td>
</tr>
<tr>
<td></td>
<td>8a.2</td>
<td>85% bulrush, 15% Common Reed, litter depth 75-100cm</td>
<td>25cm</td>
<td>No</td>
<td>4 trap/nights. No images captured</td>
</tr>
<tr>
<td>8a</td>
<td>8a.3</td>
<td>90% bulrush, 7% Common Reed, 3% cattail, litter depth up to 150cm</td>
<td>Litter too deep to determine</td>
<td>Yes (1)</td>
<td>4 trap/nights. One vole individual captured on 1/20 @ 9:30pm. One Peromyscus individual observed same day.</td>
</tr>
<tr>
<td></td>
<td>8a.4</td>
<td>80% Common Reed, 15% bulrush, 10% cattail, litter 65-70cm deep</td>
<td>13cm</td>
<td>No</td>
<td>4 trap/nights. One possible observation of house mouse.</td>
</tr>
<tr>
<td>58</td>
<td>58.1</td>
<td>60% rushes, litter depth 50cm</td>
<td>Dry soil</td>
<td>No</td>
<td>9 trap/nights; Harvest mouse every day, no voles were recorded</td>
</tr>
<tr>
<td>58</td>
<td>58.2</td>
<td>40% bulrush, 40% Yerba Mansa, 5% Boraxweed, litter depth ~60cm</td>
<td>Dry soil</td>
<td>Yes (3)</td>
<td>9 trap/nights. Burrow-like tunnel. Woody debris in the area. Vole signs.</td>
</tr>
</tbody>
</table>
We captured voles at nine non-bulrush dominated trap water that originates at the head of Site 1 (Fig. 1). The dominated area and was fed via a culvert by hot-spring Triglochin concinna (n = 1), saltgrass-rush-bulrush (n =1), and Seaside rush-sunflower (n = 1), saltgrass-rush-Goldenweed saltgrass-Boraxweed (n = 1), saltgrass-Goldenweed (n = 1), Rush (n = 7), saltgrass (n = 12), saltgrass-rush (n = 1), and Yerba Mansa (Fig. 1). We trapped voles at 25 non-bulrush dominated trap locations, including three where bulrush was completely absent. These trap locations were located in saltgrass (n = 4), Rush (n = 3), and saltgrass-rush (n = 2) dominated habitats.

Site 22: This site consisted of a relatively small patch of bulrush mixed with Annual Sunflower and surrounded by Yerba Mansa, saltgrass, and Alkali Sacaton (Fig. 1). We found vole sign along the periphery of the bulrush area; however live-trapping and camera trapping did not detect voles outside of bulrush habitat at this site.

Site 23: This site was disconnected from other potential vole habitat patches by alkali desert playa and consisted of large bulrush patches adjacent to spring sources surrounded by a large Common Reed patch to the northeast and saltgrass and rushes along other portions of the site (Fig. 1). A camera trap detected voles within a 100% Common Reed patch. We captured voles at 19 trap locations located in non-bulrush dominated habitats, including 11 locations where bulrush was absent. These locations were dominated by saltgrass (n = 9), Boraxweed (n = 1), and Common Reed (n = 12) communities. Within the Common Reed patch, 10 locations lacked any bulrush presence.

Site 31: This site occurred in the extreme northern portion of the range of the species where voles had been translocated into restored desert wetland habitat (Fig. 1). The site consisted of bulrush areas along spring-fed streams and ponds, goldenrod (Solidago spp.) meadows, Common Reed patches, and upland areas dominated by mesquite and shrubs. Voles were only detected on camera in bulrush dominated habitat. While we observed most vole sign in bulrush areas, we found vole feces in mesic, marginal habitat around the periphery of bulrush areas.

Site 39: This site consisted of a central bulrush dominated area and was surrounded by saltgrass, rushes, and Yerba Mansa (Fig. 1). We trapped voles at 25 non-bulrush dominated trap locations, including 13 locations where bulrush was absent. These trap locations were in Rush (n = 7), saltgrass (n = 12), saltgrass-rush (n = 1), saltgrass-Boraxweed (n = 1), saltgrass-Goldenweed (n = 1), rush-sunflower (n = 1), saltgrass-rush-Goldenweed (n = 1), saltgrass-rush-bulrush (n =1), and Seaside Arrowgrass (Triglochin concinna, n = 1) dominated habitats.

Site 54: This site consisted of a large bulrush dominated area and was fed via a culvert by hot-spring water that originates at the head of Site 1 (Fig. 1). The bulrush area was surrounded by rushes and saltgrass. We captured voles at nine non-bulrush dominated trap locations, including three where bulrush was completely absent. These trap locations were located in saltgrass (n = 4), Rush (n = 3), and saltgrass-rush (n = 2) dominated habitats.

Site 58: This site consisted mostly of cattail dominated vegetation which followed a small stream flowing from a spring before entering a larger marsh area consisting of bulrush-cattail mixed habitat and which connected to other sites (Fig. 1). The site was surrounded by areas of relatively high plant diversity, with areas dominated by Yerba Mansa, rushes, Boraxweed and interspersed with mesquite and cottonwood (Populus spp.). Camera traps at this site detected voles at a location co-dominated by Yerba Mansa and relatively young bulrush (Table 1).

Site 67: This site consisted of two very small bulrush patches that were surrounded by patches of Yerba Mansa, Boraxweed, saltgrass, rushes, Alkali Sacaton, and Annual Sunflower (Fig. 1). We trapped voles at 12 trap locations where non-bulrush dominated trap locations, including 10 where bulrush was absent. These areas were in Rush (n = 2), Boraxweed (n = 2), Annual Sunflower (n = 2), saltgrass (n = 1), sedge (n = 1), rush-sunflower (n = 1), rush-Yerba Mansa (n = 1), Boraxweed-rush (n = 1), and saltgrass-Yerba Mansa-sunflower (n = 1) dominated areas.

Discussion

While it is clear from previous works examining Amargosa Vole habitat use that voles are dependent on bulrush for their ecology (e.g., Klinger et al. 2016), we have shown non-bulrush dominated habitats are also used by the species, with up to 17% of trap locations in which we captured voles being located in non-bulrush dominated locations, especially habitats in Common Reed, rushes, sedges, and Boraxweed dominated communities. Vole habitat use and selection is complex may be driven by a variety of factors (Ostfeld et al. 1985; Lin and Batzli 2001; Yletyinen and Norrdahl 2008), and while outside the scope of this paper, we believe that the detection of Amargosa Voles in non-bulrush habitats is likely associated with interactions of local biological and ecological drivers. First, the use of non-bulrush habitats may be associated with dietary needs, as bulrush has low nutritional values and Amargosa Voles must consume other plant species, particularly species with higher protein content than bulrush, to meet basal metabolic and nutritional requirements (Castle et al. 2020a). These resources are most abundant in non-bulrush areas (Janet Foley et al., unpubl. report). With approximately 45% of trapping detections occurring within 10 m of bulrush, these detections may represent short distance excursions of voles into non-bulrush dominated habitats in search of needed forage resources. Castle et al. (2020a) noted that sedges, Beaked Spikerush (Eleocharis rostellata), rushes, grasses (Poaceae), Yerba Mansa, Annual Sunflower, and saltgrass are important components of vole diets, and most of these plant
species were documented at our vole-detection locations. Beaked Spikerush and non-saltgrass grasses (e.g., Alkali Sacaton, Sporobolus airoides) were not dominant species at our vole-detection sites but have been detected within vole-occupied marshes and are often associated with the periphery of bulrush patches in this system (Rado and Rowlands 1984; Janet Foley et al., unpubl. report). Second, because Amargosa Voles are reliant on standing water in this system (Janet Foley et al., unpubl. report), and this likely partially explains their dependence on water-associated bulrush, voles may only be able to use non-bulrush areas when standing water is seasonally available (e.g., more standing water in summer; pers. obs.). Third, the use of non-bulrush areas may also be influenced by the population dynamics of the species. The majority of vole detections in non-bulrush habitat occurred in summer months, when the vole population is reaching the peak of its yearly cycle (McClenaghan and Montgomery 1998; López-Pérez et al. 2023), and our detections may indicate that carrying capacity has been reached within a site and voles are dispersing in search of adequate habitat (Lin and Batzli 2001) or due to factors such as competition, inbreeding avoidance, and mate searching (Le Galliard et al. 2012). These non-bulrush areas may represent important dispersal corridors between habitat patches. Whether Amargosa Voles can persist in these non-bulrush areas is unclear. We observed voles using burrows outside of bulrush habitats in Site 9 (Fig. 3), which may indicate continued use of non-bulrush habitat in this site, but no persistent populations of voles have previously been detected in non-bulrush habitats at other sites (Klinger et al. 2016; López-Pérez et al. 2019; Janet Foley et al., unpubl. report). Amargosa Voles most likely require bulrush patches for survival (Klinger et al. 2015, 2016), due to the insulative litter layer of bulrush providing protection against extreme temperatures and cover against predators, but further studies are needed to understand the complexity of range-wide habitat selection and subpopulation persistence for the species.

We detected more voles in non-bulrush habitat and generally at greater distances from bulrush habitat in the southern portion of the range of the species than the north. While this trend may have been caused by our sampling effort, there are also possible ecological explanations for this pattern. Sites in the north generally have larger bulrush patches and may allow for higher densities of voles to persist, lessening the need for dispersal to non-preferred habitats (Andreassen and Ims 2001). Southern sites tend to be more florally diverse and have more gradual transitions between vegetation communities, thus they may provide more opportunity for voles to use non-bulrush habitat. More research into specific causes of differences in habitat use between marshes may lead to greater insight into species biology and aid in the management of the species.

Despite its importance to vole survival, bulrush alone is not sufficient to support the species (Castle et al. 2020a) and non-bulrush habitats seem to also be important to vole ecology even though these areas have been underrepresented in the literature and management concern. We suggest that managers should manage both bulrush and non-bulrush areas as vole habitat. In particular, non-bulrush areas adjacent to or connecting bulrush habitats should be managed for their forage and as corridors for dispersal between core habitat patches. By ensuring adequate forage resources surrounding bulrush patches, managers may be able to positively influence vole biology and population viability (Jones 1990; Turchin and Batzli 2001; Forbes et al. 2014). By promoting non-bulrush vole habitat between bulrush patches, where bulrush is not adapted to local conditions (e.g., soil salinity, water availability), managers may be able create corridors between source populations in larger bulrush areas (Janet Foley et al., unpubl. report) and safeguard populations against deleterious effects associated with isolated populations. This could aid in populations re-establishing in sites following local extirpation. Doing so would support a functional

Figure 3. Images of Amargosa Voles (*Microtus californicus scirpensis*) captured using remote camera trapping techniques in 2019–2020 at Site 9 near Tecopa, Inyo County, California. Images depict (a) voles using below-ground burrows in Boraxweed (*Nitrophila occidentalis*) dominated habitat and (b) in Common Reed (*Phragmites australis*) dominated habitat.
metapopulation (Reed 2004; Molofsky and Ferdy 2005), which has been identified as necessary to the survival and recovery of the species (USFWS 2019; Castle et al. 2020b). Incorporating non-bulrush vole habitat into management objectives is likely to have multiple beneficial effects for the conservation of the vole as well as other rare and protected species in the area.

Acknowledgments.—We thank the U.S. Bureau of Land Management (BLM), U.S. Fish and Wildlife Service (USFWS), Shoshone Village, the Amargosa Conservancy, U.S. Geological Survey, California Department of Fish and Wildlife - Region 6, and the many local stakeholders who supported this project. This project was funded by the California Department of Fish and Wildlife, funding from the USFWS Traditional Section Grant in Aid Program (Award #F13AP00015), and the BLM. The contents may not necessarily reflect the official views or policies of the State of California or federal agencies.

Literature Cited

Yletyinen, S., and K. Norrdahl. 2008. Habitat use by...

Austin Roy is a Wildlife Ecologist interested in understanding how the different roles of wildlife affect how they influence their habitats and ecosystem function. He has been working with the Amargosa Vole since 2013. He received his B.S. in Wildlife from Humboldt State University, Arcata, California, and Ph.D. in Ecology and Evolutionary Biology from the University of Texas at El Paso. Austin seeks to use his knowledge and skillset to better conserve wildlife and other natural resources for the public at large. (Photographed by Anna Rivera Roy).

Andrés M. López-Pérez is a Professor of Disease Ecology at Instituto de Ecología in Xalapa, Veracruz, Mexico. After earning a D.V.M., Master’s, and Ph.D. in Mexico City, he completed a fellowship at the Centers for Disease Control and Prevention in the Vector-Borne Branch in Fort Collins, Colorado, and a postdoctoral fellowship at University of California, Davis. As a Veterinarian and Disease Ecologist, his research is mainly focused on vector-borne zoonoses, medical entomology, eco-epidemiology of pathogens at the human-wildlife interface, and the ecology of endangered species. (Photographed by Andrés M. López-Pérez).

Laura Backus is an Assistant Professor at California Polytechnic University in San Luis Obispo. She grew up in western Washington State, then completed her Bachelor’s degree, Master’s degree in Public Health, and Veterinary Medicine degree at Colorado State University, Ft. Collins. She then pursued a Ph.D. in Epidemiology at the University of California, Davis, focused on tick-borne diseases that are shared between humans and animals. Laura is passionate about integrating epidemiology and disease ecology to study the intersection of human and animal health. (Photograph courtesy of California Polytechnic University).

Stephanie Castle is a Wetland Ecologist experienced in restoration ecology and endangered species management. She has worked with the Amargosa Vole since 2014. Stephanie received her B.S. in Environmental Biology and Management and her Ph.D. in Ecology with an emphasis in Restoration from the University of California, Davis. (Photographed by Mary Vincent).

Deana Clifford received her B.S. in Wildlife Conservation Biology, Doctor of Veterinary Medicine, and Master’s and Ph.D. degrees in Epidemiology from the University of California (U.C.), Davis. She is currently the Veterinarian for Nongame, Threatened and Endangered Species at the California Department of Fish and Wildlife and is an Assistant Clinical Professor at U.C. Davis. (Photograph courtesy of the California Department of Fish and Wildlife).

Janet Foley is a Professor and Researcher for the Department of Veterinary Medicine and Epidemiology in the School of Veterinary Medicine at the University of California, Davis. She studies the ecology and epidemiology of infectious diseases in complex communities. Research in her lab aims to understand how community complexity contributes to disease persistence and emergence, and how driving factors are affected by anthropogenic change. (Unknown photographer).