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Abstract.—The declining costs and increasing capabilities of unmanned aerial vehicles (UAVs) have led to their expanded 
use in natural resources research and management.  Generally, UAV-based data collection involves larger (i.e., more visible) 
components (e.g., large mammals, blocks of forest) that are more easily observed by UAV cameras.  Little research has 
focused on UAV effectiveness in researching and monitoring relatively small and less visible objects.  Fecal surveys are 
broadly applied methods for determining wildlife occupancy, population abundance and trends, and land use.  Potentially, 
UAVs could improve, or augment, fecal surveys by reducing time and effort expenditures, expense, and impacts on focal 
species behavior.  Yet, their effectiveness and ability to produce accurate and precise estimates have not yet been evaluated.  
We compared UAV surveys at multiple observation altitudes to traditional in-person on-the-ground surveys to test relative 
UAV effectiveness.  We created artificial survey plots with a randomly assigned number of cereal pellets that mimicked the 
morphology of rabbit pellets.  UAVs provided similar data to in-person counts for presence-absence inference.  Additionally, 
raw counts were similar in pattern to in-person observations for pellets across a range of cover classes but were biased low in 
most circumstances.  Heavy cover negatively affected both methods but resulted in higher undercounting with the UAV.  The 
density of vegetation cover impacts pellet detection for both in-person and UAV-based surveys.  Our research demonstrates 
that UAV-based fecal surveys are viable strategies.  Further research in different conditions and fecal shapes is required for 
full implementation.
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Introduction

Unmanned aerial vehicles (UAVs) are an emerging 
technology improving data collection capabilities, data 
accuracy, research efficiency, cost, and human and 
wildlife safety in natural resources fields (Linchant et 
al. 2015; Nowak et al. 2019).  The technology includes 
high-definition camera options, technological integration 
(e.g., Global Positioning Systems), improving battery 
life and battery replacement options, modularity 
and customization, software interface and command 
capability, commercial availability, and maturing 
legislation for UAV operation (Christie et al. 2016; 
Rosario et al. 2020).  The increasing capability and 
diminishing cost of UAVs has spurred their use in 
natural resources research and management.  Over time 
UAV applications have expanded to include a variety of 
subfields including wildlife biology (Lopez and Mulero-
Pázmány 2019; Scarpa and Piña 2019).  Much of the 
documented use of UAVs in natural resources fields has 
focused on large-scale subject matter such as analyzing 
landscape-level vegetation parameters, conducting large-
bodied animal counts, and general wildlife population 
analyses (e.g., Witczuk et al. 2018; Castellanos-Galindo 
et al. 2019; Scarpa and Piña 2019).  We found a variety of 
research focused on use of UAVs for surveying small or 
cryptic objects (e.g., Martin et al. 2012; Weissensteiner 
et al. 2015; Landeo-Yauri et al. 2022).  Of note, Martin 
et al. (2012) tested the ability of UAVs to detect smaller 

or hidden test objects (tennis balls) in an approximation 
of wildlife surveys.  In some instances, researchers 
have found UVA-derived estimates of medium sized 
animals (e.g., sea birds) to be more accurate compared 
to traditional enumeration methods (Hodgson et al. 2016, 
2018).  We did not, however, find literature evaluating 
the use of UAVs to identify or estimate the numbers of 
very small objects such as rabbit fecal pellets or in pellet-
related wildlife surveys. 

The attractiveness of UAVs partially stems from 
research efficiency and safety.  They are often able to 
access areas faster and more safely than walking, driving, 
boating, or flying and can have a lower level of auditory 
and visual intrusion than conventional vehicles (e.g., cars, 
helicopters; Lisein et al. 2013; Linchant et al. 2014).  For 
instance, Castellanos-Galindo et al. (2019) used UAVs 
to access remote coastal areas including mangroves and 
rocky coasts during tropical habitat mapping surveys.  
Natural resources workers face a variety of job-related 
dangers (Sasse 2003; Watts et al. 2010).  Aerial-wildlife 
surveys in traditional aircraft is a leading cause of death 
for biologists (Sasse 2003).  UAVs are increasingly 
capable of replacing humans in dangerous situations 
(e.g., using UAVs instead of humans in helicopters for 
surveys).  As such, UAVs are a relatively low-cost option 
to increase human and wildlife safety.

UAV capabilities are a continued subject of exploration 
despite their demonstrated benefits in a variety of natural 
resources fields.  For example, the ability of UAVs to 
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Distribution of responsibility.—We carefully 
separated study setup and data collection responsibilities 
among the three primary researchers.  Separate 
individuals performed each task of: (1) plot setup and 
UAV operation; (2) surveyor 1 / ground surveys; and 
(3) surveyor 2 / image analyses to avoid any observer 
contamination across surveys.  Both surveyors were 
highly experienced with fecal pellet surveys in general 
and LKMR surveys in particular.

UAV and operation specifications.—We used a 
Phantom 4 UAV (Da-Jiang Innovations [DJI], Shenzhen, 
China) to conduct plot surveys.  Our UAV was equipped 
with a 12.4-megapixel camera (field of view was 94°, 
1/2.3” Complementary Metal Oxide Semiconductor 
[CMOS] sensor) and was capable of a hover-accuracy 
range (vertical) of ± 0.1–0.5 m depending on positioning 
method (dji.com/mobile/phantom-4).  We kept camera 
settings at factory defaults: aperture = auto, white 
balance = auto, style = standard.  We flew the UAV using 
the DJI Go 4 application in P-mode in free flight altitude 
hold (UAV will hold position).  We conducted all flights 
in Class G airspace (usually classified as uncontrolled 
airspace 0–1,200 m above ground level).  We cleaned 
the camera lens between each flight as low altitude flying 
can mobilize dust that coats the equipment.  We flew the 
UAV when wind speed was < 5 kph to improve stability 
and reduce battery drain.  The UAV operator held a U.S. 
Federal Aviation Administration (FAA) 107 Remote 
Pilot Certificate at the time of the study.  Additionally, 
the UAV was registered with the FAA as required under 
U.S. law with all study flights following FAA and Texas 
A&M University (TAMU) rules and safety guidelines.  
We submitted a flight plan, which was approved by the 
TAMU UAV committee prior to our study. 

Experimental design: setup.—We surveyed in areas 
of mixed herbaceous cover with no woody vegetation.  
We designated four broad herbaceous vegetation cover 
classes based on conditions we experienced working in 
LKMR habitat: (1) absent cover (0% herbaceous cover 
[bare ground]); (2) low cover (< 20% herbaceous cover); 
(3) moderate cover (20–50% herbaceous cover); and (4) 
high cover (> 50% herbaceous cover).  We assigned 12 
circular 1 m2 plots per cover class (48 plots total; Fig. 
1).  The field researcher assigned a plot to its respective 
cover class.  We determined the locations for plots in 
the field (in Texas) based on previous experience with 
similar cover classes in LKMR research (in Florida).  We 
fully outlined plots using biodegradable marking chalk 
and we placed survey flags in the center of plots. 

We used Kix cereal pieces (General Mills, 
Minneapolis, Minnesota, USA) as a substitute for rabbit 
fecal pellets due to their similar size, shape, weight, and 
coloration (adult pellets ≥ 6.7 mm; Forys 1995; Fig. 
2).  We based cereal dispersal amount on individual 

effectively observe small or obscured objects such as fecal 
pellets is relatively unknown.  Fecal pellet surveys are 
broadly applied in wildlife conservation and management 
and often require significant amounts of fieldwork.  This 
is generally expensive, time-consuming, physically 
difficult, and potentially dangerous due to environmental 
hazards.  Ideally, we would reduce fecal pellet fieldwork 
without reducing data quantity and quality.  The pertinent 
question is whether UAVs produce similar estimates of 
pellet presence or abundance to provide useful inferences 
for management and research.  If we find UAVs yield 
biased or inaccurate estimates, can we predict or identify 
causes for those errors?

We used Lower Keys Marsh Rabbits (LKMR; 
Sylvilagus palustris hefneri) as a model for testing UAV 
capabilities of seeing cryptic or small animal sign.  Fecal-
pellet surveys are an important LKMR data collection 
strategy (Faulhaber 2003; Schmidt et al. 2010; Dedrickson 
2011).  LKMR habitat primarily consists of areas with low 
to heavy herbaceous cover including native salt grasses and 
forbs with little or no forest canopy.  We survey hundreds 
of pre-selected survey plots throughout the LKMR range 
as part of ongoing population monitoring efforts.  Although 
UAVs preclude some methods related to in-person 
surveys (e.g., pellet removal for certain density estimation 
techniques), LKMR surveys are an excellent candidate for 
UAV-based surveys if researchers can sufficiently detect 
fecal pellets in UAV-captured photos.  Additionally, UAV-
based fecal surveys may have broad application.  Fecal 
surveys are a common survey method for a variety of taxa 
such as lagomorphs (e.g., Hodges and Mills 2008; Murtze 
et al. 2014), cervids (e.g., DeCalesta 2013), and mustelids 
(e.g., Birks et al. 2005).  Our primary goal was to evaluate 
the effectiveness of a UAV in detecting objects similar in 
size and distribution to LKMR pellets.  Our objective was 
to compare accuracy of on-the-ground surveys with UAV-
based aerial surveys in multiple cover types.

Methods

Study site.—We conducted our experiment in College 
Station, Texas, USA, 15 February 2019.  College Station 
is in southeastern Texas in the Post Oak (Quercus 
stellata) Savannah ecoregion (https://enrta.tamu.edu/
restoration/).  Much of the rural acreage is a mix of upland 
and bottomland grasslands, with scattered Post Oak 
Woodlands located both in the upland and bottomland 
zones.  We did not conduct this experiment in the Lower 
Florida Keys, Florida (location of LKMR), for several 
reasons.  LKMR habitat co-occurs with significant human 
presence or in areas with restricted access and airspace.  
Local authorities are reluctant to approve use of UAVs 
without evidence that supports research effectiveness.  
College Station was selected due to proximity to research 
staff, availability of remote testing sites, and presence of 
vegetation structure similar to LKMR habitat. 
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Experimental design: UAV operation.—After cereal 
was placed on plots, we first surveyed with the UAV and 
then conducted on-the-ground data collection.  We chose 
this order of survey to minimize the impact of vegetation 
or pellet disturbance from on-the ground surveys.  UAV 
flights began in the morning and continued through the 
afternoon to ensure direct overhead sunlight to minimize 
shadows.  We flew the UAV above the plots at multiple 
altitudes (3 m, 4 m, 5 m) and took one photograph at each 
altitude or three photographs total at each plot.  These 
altitudes corresponded to ground sampling distances of 
0.13 cm/pixel (3 m), 0.17 cm/pixel (4 m), and 0.21 cm/
pixel (5 m).  The UAV remained stationary directly above 
each plot and took a picture at each assigned altitude.  

Experimental design: data collection.—One 
experienced surveyor counted pellets at all ground plots 
and another counted pellets in UAV images displayed 
on a 27” 4K monitor.  Counts of pellets using the UAV 
photographs were done sequentially from the highest 
altitude to the lowest.  Consequently, the final count 
was not independent of the other counts.  We took this 
approach because we assumed that surveys on actual 
locations would most likely take numerous photographs 
or videos once over a plot.  Throughout the manuscript, 
references to what we call altitude should be considered 
a combined effect from altitude and increased vigilance 
within the surveys.  We do make specific comparisons 
to only the highest altitude to reduce inference based on 
multiple observations at different altitudes. 

Experimental design: data analysis.—We expected 
that UAVs could be useful tools for monitoring LKMR 
at various levels of investigation or need.  If they could 
be used accurately to document presence and absence 
of pellets, then they could be used within an occupancy 
approach whereas if they effectively reflected patterns of 
pellet density they may serve as a correlate to existing 
population estimates (e.g., Schmidt et al. 2010).  Ideally, 

plots on four categories: (1) Absent (0 pellets); (2) low 
(1–15 pellets); (3) moderate (16–100 pellets); and (4) 
high (101–300 pellets).  These categories were derived 
from the distributions of counts from current LMKR data 
collection efforts (Roel Lopez et al., unpubl. reports) and 
provide useful population monitoring information such 
as rough occupancy, population trends, and overall range.  
Each cover class had all four pellet distributions (four 
plots per cover class).  We determined the exact number 
of pellets placed into each non-zero plot by random 
number generation within the limits of the category (e.g., 
moderate = random number within 16–100 pellets).  
Pellets were placed in plots by the UAV operator who did 
not reveal these numbers to the other researchers until all 
data collection was complete.

Figure 1.  Unmanned aerial vehicle photograph taken at 3 m 
altitude of 1 m2 plots with pseudo rabbit pellets in low vegetation 
cover, College Station, Texas, USA, in 2020. (Photographed by 
Ian Gates).

Figure 2.  Comparison of the appearance of (A) pellets of Lower Keys Marsh Rabbits (Sylvilagus palustris hefneri) and (B) pseudo 
pellets. (Photographed by Andrea Montalvo).
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estimates derived from UAVs would recapitulate the true 
numbers of pellets within plots, but if they produced 
consistently biased estimates, quantifying those biases 
could be important.  We evaluated the ability of UAV-
based estimates to provide similar estimates to in-person 
surveys for presence-absence data, their relative patterns 
of abundance, and their precision relative to the true 
number of pellets on a plot.  For each level of analyses, 
we compared the highest altitude of the drone (5 m) to 
in-person estimates first and as our primary comparison 
because these estimates were independent.  Nevertheless, 
we also evaluated the lowest altitude to see how increased 
evaluation across multiple photos and altitude changed 
patterns and biases in estimates relative to human efforts.  

For each plot we quantified the true absence or 
presence of any pellets to counts made using UAV and 
in-person surveys.  If there was disagreement between 
the respective methods and the true presence on plot, we 
coded it as a 0 where we coded the records as a 1 if the 
method agreed with the true presence on a plot.  We used 
PROC Logistic (SAS; Cary, North Carolina) to quantify 
the rates, and odds, that a method was correct.  For the 
in-person data set, we used the cover class as a discrete 
variable and then modeled this as the explanatory variable 
to the true presence.  We modeled the cover as a discrete 
variable to evaluate differences among the cover classes.  
For comparison to the in-person data, we used only the 
information collected at 5 m altitude and evaluated the 
95% Confidence Interval (CI) for differences among 
cover groups.  We also modeled information at 3 m 
altitude to see if it differed from either the 5 m or in-
person methods.  We report the odds-ratios values for 
these comparisons with 95% CIs. 

We conducted initial plots of the raw count data using 
both methods, and all altitudes for UAV data, against 
the true numbers of pellets deployed.  These initial 
plots indicated a potential non-linear response between 
count methods as the total number of pellets increased.  
Therefore, to assess the relationship of counts to the true 
number for similarity in their general pattern, we used 
General Linear Models with 2nd and 3rd degree polynomial 
terms as well as single order term where the true numbers 
of pellets deployed was used as the explanatory variable.  
We compared the 2nd and 3rd order models to the single 
order model using Akaike Information Criteria corrected 
for small sample size (AICc; Burnham and Anderson 
2004) to identify which model best described the data.  
For comparison between the two methods, we examined 
the 95% CIs around their respective beta estimates for 
overlap. 

We evaluated the precision of counts by calculating a 
relative deviance of the observed counts versus the true 
numbers deployed.  Because some plots had no pellets 
deployed, we calculated deviance as:

where the observed were the numbers of pellets 
counted on an individual plot, and at specific altitudes 
for the UAV, and the true number was the numbers of 
pellets actually deployed on a plot.  For the purposes 
of statistical analyses, we took the absolute value of 
this relative deviance value but included the sign and 
magnitude of this value when we report mean values.  
The sign of the value was important to consider as it 
reflected under-detection (negative values) or over-
detection (positive values). 

We conducted two analyses using these data.  In the 
first analyses, we directly compared the relative deviance 
of estimates directly between the two methods.  Here 
we made all comparisons between in-person counts 
and UAV-based counts at 5 m altitude.  We evaluated 
six distinct models in these analyses with explanatory 
variables considered as follows: (1) A single term model 
using the method (UAV vs in-person); (2) A single term 
model with cover class; (3) A single term model with the 
numbers of pellets deployed on a plot.  We considered 
pellet count as an explanatory variable based on our earlier 
analyses which indicated changes in estimates based on 
the numbers of pellets; (4) An additive model with both 
cover and methods included as discrete variables; (5) An 
interactive model with terms for method, cover class, and 
an interaction between method and cover class; and (6) 
An interactive model with terms for method and the true 
numbers of pellets deployed on a plot. 

We constructed all models in PROC GENMOD using 
a Poisson distribution with a log link and type III sums of 
squares.  We evaluated other distributions, but the Poisson 
fit our data best based on our evaluation of histograms 
and residual plots.  We compared these models using 
AICc and used parameter estimates from the top model.  
We report all estimates from these models with 95% 
CIs.  We also examined P-values from respective effects 
to make a secondary evaluation of the effects relative 
to their descriptive ability on deviation in our counts.  
We used an alpha of 0.05 for rejecting a null hypothesis 
of no effect.  If we found significant differences from 
specific main effects, we used Nelson-Hsu comparisons 
to identify groups that were different from one another. 

In a secondary analysis of relative deviation, we 
examined only the UAV data.  Our primary goal was to 
examine the effects of altitude on percentage deviation.  
Because we felt cover class could potentially exert 
additive or interactive effects across levels of altitude, 
we also tested several models including those terms.  We 
tested four models with the UAV data as such: (1) A single 
effect model with altitudinal effect across 3 m, 4 m, and 5 
m altitudes; (2) A single effect cover class model; (3) An 
additive model with terms from both altitude and cover 
class; and (4) An interactive model with terms from 
altitude, cover class, and interactions between cover 
class and altitude.  We tested these four models as we did 
with our analyses of methods as described above. 	

Parker et al. • Fecal pellet surveys using drones.
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Results

For in-person surveys, across all cover types, 47 of 
48 (97%) were categorized properly based presence-
absence.  Only the highest cover class had one of 12 
plots that were mis-categorized for presence-absence.  At 
this single plot, we detected no pellets when five were 
on the plot. For the UAV method, across all altitudes and 
cover types, 126 of 144 (88%) were correctly categorized 
for having pellets present or absent.  Of the 18 (across 
all altitudes) that were improperly classified, two (11%) 
detected pellets when no pellets were present and (88.9%) 
failed to detect when they were present (Table 1).  For in-
person surveys, we detected no differences among cover 
class (χ2 = 0.015, df = 3, P = 0.997).  For UAV data, we 
could not reject the null hypothesis of no effect based on 
cover classes at either the 5 m (χ2 = 0.208, df = 3, P = 
0.976) or 3 m level (χ2 = 0.010, df = 3, P = 0.997).

Regression analyses on the raw count data indicated 
modest but significant differences between the in-person 
vs UAV count relative to their true numbers of pellets 
on the plot.  Both methods showed significant positive 
relationships to the true number of pellets on plots (Fig. 
3).  In-person counts were best described with a second-
order polynomial regression (AICc = 428.38, χ2= 46.80, 
df = 1, P < 0.001, β = 0.927 [0.722–1.12], β2 = ˗0.0012 
[˗0.002, ˗ 0.0004]) formulation as AICc values for this 
model were > 4 different from the single-order model 
(AICc = 433.85, χ2  = 93.86, df = 1, P < 0.001, β = 

0.638 [0.0.564–0.710],).  A 3rd order model was not well 
supported by the data (AICc = 338.7).  In contrast, UAV-
based counts (5 m altitude only) were best described with 
a 1st order model (AICc = 474.01, χ2= 44.33, df = 1, P 
< 0.001, β = 0.484 [0.373–0.595] ) model compared to 
the 2nd (AICc = 476.08, χ2= 10.24, df = 1, P = 0.001, β 
= 0.578 [0.0.242–0.913]) and 3rd (AICc = 479.23) order 
models.  This beta-estimate for the 1st order model was 
significantly lower than the comparable parameter for 
the in-person counts indicating an on-average negative 
bias for the UAV-counts relative to in-person methods.  
A regression using UAV-counts at the 3 m altitude 
was similar to the one we conducted at 5 m (β = 0.55 [ 
0.34–0.65]).  Both in-person and UAV surveys methods 
under-detected pellets on plots on average.  In-person 
surveys had a mean deviance of ˗0.18 ± 0.231 (standard 
deviation) whereas UAV surveys had a mean of ˗0.24 
± 0.852.  Commensurate with these means, in-person 
surveys were negatively biased on 28 of 48 (58%) of 
plots whereas UAVs were negatively biased on 30 of 48 
(62%).  In contrast, both methods reported two plots with 
higher numbers of pellets than were actually on plots.  
When we examined only the 3 m altitude for UAVs the 
mean values were ˗0.31 ± 0.321 but the same proportion 
were negatively biased. 

Our examination of factors that best explained relative 
deviation revealed that both the method and cover class 
were important (Table 2).  The best model included an 
effect from both method and cover class with a ΔAICc 
value of 3.64 compared to the next best model, which 
included only a cover term.  From this top model the 
effects from both method (χ2 = 5.87, df = 1, P = 0.015) and 
cover class (χ2 = 18.05, df = 1, P < 0.001) were significant 
when we considered their P-values.  All other models we 
tested included significant effects from both method and 
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Type Cover n Correct Percentage

In-person Absent 12 12 100%

Low 12 12 100%

Medium 12 12 100%

High 12 11 92%

UAV

     3 m Absent 12 12 100%

Low 12 12 100%

Medium 12 10 83%

High 12 10 83%

     4 m Absent 12 12 100%

Low 12 12 100%

Medium 12 8 66%

High 12 9 75%

     5 m Absent 12 12 100%

Low 12 12 100%

Medium 12 8 66%

  High 12 9 75%

Table 1.  The total number plots (n) and the number and 
percentage identified correctly for presence-absence status 
for in-person surveys and Unmanned Aerial Vehicles 
(UAV) surveys by altitude (meters) at a study site at 
College Station, Texas.

Figure 3.  Linear Regression of the counts versus pellets 
during Unmanned Aerial Vehicles (UAV) test, College 
Station, Texas, in 2020. The black diagonal line represents 
the hypothetical ideal relationship between the number of 
actual pellets and the number of pellets counts. The blue line 
represents a 2nd order polynomial regression line for in-person 
counts and the red line a 1st order regression line fit for UAV-
based counts. 
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cover class.  Across all methods the summed weights 
indicated cover class to be most influential (cumulative 
weight = 1.0) where all models with method included as 
an explanatory variable equaled 0.83.  Largely, the results 
of our analyses indicated that differences in method and 
cover class were additive rather than interactive (Fig. 4).  
Mean values of deviance were lowest on average for in-
person estimates compared to UAV estimates similarly 
across all cover classes.  Deviations were lowest for both 
methods when cover was absent (mean = 0.036 ± 0.061), 
and highest in the moderate (mean = 0.58 ± 0.981) and 
high cover classes (mean = 0.50 ± 0.357).  This pattern 
is consistent within individual methods although for 
UAV estimates, the moderate cover class had the highest 
deviation (mean = 0.92 ± 1.31, z-value = 2.84, P < 0.010; 
Fig. 4).  This value was inflated by a single plot where 

five pellets were counted when none were truly present 
and yielding a value of five.  Had we eliminated this one 
plot, then the deviation for UAVs in the moderate cover 
class (mean = 0.54 ± 0.295) would have been lower but 
similar to mean deviations in the high cover class. 

Our analyses of the UAV data indicated no strong 
effects on deviations from the true value based on 
altitude but did retain a signal from cover class.  Among 
the models we tested, altitude was not well supported 
(ΔAICc = 28.6 from top model).  Accordingly, no 
significant effect was detected for altitude in any model 
we tested (χ2 = 1.41, df = 2, P < 0.491).  Although we 
did not formally examine the data from the 3 m altitude, 
the patterns of mean values were similar in pattern to our 
formal analyses across cover class (Fig. 4).  The average 
deviation at the 3 m altitude was lower (mean = 0.33 ± 
0.350) than those at the 4 m (mean = 0.39 ± 0.372) or 5 
m (mean = 0.40 ± 0.394) altitudes.  Cover class was far 
more powerful in describing deviation in our UAV data 
(e.g., Fig. 4).  Models that included cover and altitude 
either additively (ΔAICc = 2.9 from top model) or 
interactively (ΔAICc = 15.8 from top model) seemed not 
as important as cover class by itself. 

Discussion

The use of UAVs in natural resources research and 
management is widespread and well-documented.  
This has overwhelmingly tended towards more easily 
observable phenomena such as basking or foraging 
animals, vegetation communities, and fire effects (e.g., 
Biserkov and Lukanov 2017; Witczuk et al. 2018; 
Castellanos-Galindo et al. 2019; Nowak et al. 2019; 
Scarpa and Piña 2019).  Much of the relevant natural 
resources work, however, requires observation of small 
items like fecal pellets. 

Our analyses indicate that UAVs and in-person counts 
of fecal pellets are largely correlated with one another, 
and to the true numbers of pellets on plots.  Both UAVs 
and in-person surveyors are, on average, biased low in 
their assessments of the true numbers of pellets on plots.  
UAVs appear to have a high degree of negative bias and 
produce more variability in estimates.  Both in-person 
and UAV counts perform well when vegetation cover is 
absent or low but are less reliable when there is moderate 
or high vegetation cover.  The altitude of the drone 
heights we used (3–5 m above the ground) were largely 
uninformative or increased the precisions of counts.  We 
acknowledge that our counts below 5 m were ultimately 
not independent of one another, but this provides 
compelling evidence that modest differences in altitude 
or photographic examination effort did little to improve 
the precision of the counts.  Conceivably had we flown the 
UAV to a lower altitude (1 m), taken more photographs, or 
spent more time examining any one of the photographs, 
our precision would have improved.  Nonetheless, our 
results highlight that even in-person counts are biased 
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Figure 4.  The average percentage deviation ± standard 
deviation from the true pellet count for in-person surveys 
and unmanned aerial vehicle surveys conducted at 5 m and 
3 m above the observation plot within four vegetation cover 
class categories (absent = 0% herbaceous cover, low = < 20% 
herbaceous cover, medium = 20–50% herbaceous cover, and 
high = > 50% herbaceous cover) for 48 plots surveyed in 
College Station, Texas, in 2020.

Model AICc ΔAIC k likelihood weight

Method + Cover 119.01 0.00 6 1.00 0.83

Cover 122.65 3.64 5 0.16 0.13

Method × Cover 125.13 6.12 16 0.05 0.04

Method × Pellets 
Deployed 133.15 14.14 6 0.00 0.00

PelletsDeployed 135.51 16.50 2 0.00 0.00

Method 216.69 97.68 3 0.00 0.00

Table 2.  Comparison of five competing models hypothesized 
to explain the percentage deviance of count versus true data 
for pseudo-pellet surveys conducted using in-person and 
Unmanned Aerial Vehicles (UAV) methods.  Metrics used to 
compare models follow the form of Burnham and Anderson 
(2002) where the number of estimable parameters (k), number 
of observation (n = 96 for all) are used to construct Akaike’s 
Information Criterion corrected for sample size (AICc), the 
difference between top model and other models (ΔAICc), the 
model likelihood, and model weight (w).
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low in thick cover.  Therefore, we recommend estimating 
or adjusting the effort for searching when either UAVs 
or on-the-ground surveyors examine locations with high 
ground cover.  Alternatively, researchers could include 
an adjustment of pellet counts based on the known biases 
associated with cover or surveyor skill. For example, 
our data suggests a modest adjustment of 4% detection 
rate when vegetation is absent but as much as 63% in 
vegetation > 75%.  We recognize, however, that our 
results are unlikely to be consistent in all scenarios but in 
most field settings human-based and drone-based surveys 
are infrequently going be completely independent.  
UAVs could work with surveyors on an initial visit to 
empirically estimate the detection probably on specific 
plots or in cover classes that are then used on subsequent 
surveys by the UAV alone.  

We found that in-person surveyors were more accurate 
in their assessments compared to UAVs.  Yet, our 
analyses suggested that when there are large numbers of 
pellets (> 100), in-person counts became more negatively 
biased.  Human estimates were nearly identical to the 
true numbers until roughly 100 pellets but appeared to 
reach an asymptote thereafter.  We hypothesize that this 
resulted from our surveyor not being able to precisely 
keep track of pellets when they became more numerous.  
Moreover, the researcher could not revisit counts after 
having left the plot.  Here, drones could ultimately offer 
an improvement because the photographs are stored for 
future review by multiple observers or by the potential 
of using image processing algorithms or even Deep 
Learning to improve upon counts. 

In general, UAVs seem adequate to identify presence 
and absence of pellets on plots irrespective of cover.  
Our results did not indicate a significant decline in 
the ability of UAVs to adequately categorize a plot 
for presence or absence.  Our results highlight the 
potential limitations of UAVs, but also provide potential 
approaches for overcoming specific biases.  For example, 
taking photographs (or video) from multiple angles or 
heights could help improve detection and counts and 
could conceivably be used within occupancy analytical 
frameworks to explicitly estimate the probability 
of detections.  In future studies of this nature, we 
recommend mixing roles so that each researcher is not 
solely responsible for a single data collection effort (i.e., 
in-person versus photographs).  This would help separate 
surveyor effects from test effects; however, we note that 
such observer differences are likely common in most 
research.

Our research demonstrated several important points. 
UAVs provided similar, low-biased, numbers to in-
person observations for pellets across a range of cover 
types.  Similarly, Goebel et al. (2015) found no significant 
difference between UAV-based chick counts and ground 
counts when conducting penguin surveys (Gentoo 
Penguin, Pygoscelis papua and Chinstrap Penguin, P. 
antarctica).  Cover type appears to have some capacity 

to bias UAV results modestly but once the differences in 
method were accounted for, cover type did not seem to 
impose an interactive effect where UAVs had additional 
biases with higher or lower cover.  Other studies have 
found stronger correlations between vegetation cover 
and detection such as Barr et al. (2018) who found lower 
colonial waterbird detection by a UAV when vegetation 
canopy cover was present.  More interestingly, there was 
no important difference in the deviation from the observed 
to the true numbers based on the survey method.  Cover 
density is likely to reduce the precision and accuracy of 
pellet counts for both in-person and UAV based surveys, 
but it is unlikely to alter the relative assessment of the 
number of pellets among surveyed plots.  Both UAV-
based surveys and on-the-ground surveys accurately 
detected categorical pellet abundances (low, moderate, 
high).  For most surveys, UAVs appear to provide 
sufficient information to determine if pellets are present 
and their relative abundance.  Additionally, altitudes 
of 3–5 m in height had only modest effects on the raw 
numbers of pellets detected even though the relative 
deviance was unaffected.  Although focusing on much 
larger objects, Hodgson et al. (2013) found that UAV 
altitude did not impact Dugong (Dugong dugon) sighting 
rates or identification capability.

UAVs did relatively well in detecting fecal pellets in 
a variety of real-world scenarios.  As experienced rabbit 
biologists, we would feel comfortable using UAVs to 
conduct fecal pellet surveys in absent and low vegetation 
cover.  The ability of UAVs to traverse rough habitat 
could provide an extensive reduction in field-time and 
associated survey costs.  As such, the relative efficacy 
of UAV-based pellet surveys must be calibrated for each 
project with detection rates and reliability evaluated prior 
to data collection. Researchers must understand the local 
impact of vegetation cover density on pellet detection. 

Our primary UAV-related concern was that propeller 
wash (air pushed from the rotors) would move pellets 
or vegetation thus impacting detection.  This concern 
proved unwarranted as we detected no impacts.  Our 
pseudo pellets were often evenly spread throughout plots 
without being blown to the edges or next to obstacles 
such as vegetation.  This was true even for bare-ground 
plots with minimal rolling resistance.  For studies where 
this is a concern, researchers should conduct pre-study 
data collection to determine propeller wash impact. 

We believe that UAVs can provide data on small 
phenomena such as fecal pellet surveys.  These can 
provide flexibility for natural resources agencies 
conducting critical work with decreasing budgets.  
The relatively low cost and availability of UAVs and 
associated components make the adoption of UAV 
technology a low-risk endeavor for agencies seeking 
higher returns on investments.  We strongly recommend 
additional evaluation of UAV accuracy in various cover 
types and scenarios.  Additionally, we recommend that 
UAV operators understand the local, state, and federal 
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laws prior to use of any UAVs.  Ultimately, UAVs are 
like any other research and conservation tool.  They will 
provide quality data if the project design is robust and the 
limitations of the equipment are understood.
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